(圖片來(lái)源:pixabay)
本文編譯自長(zhǎng)期關(guān)注醫(yī)學(xué)領(lǐng)域的知名博客lukeoakdenrayner,作者盧克·奧克登-雷納(LukeOakden-Rayner)在引言里說(shuō)道,自己在推特上就相關(guān)話題和網(wǎng)友做了大量的討論,早就想列這樣一個(gè)清單了,同時(shí)盧克也表示這十個(gè)觀點(diǎn)一定會(huì)引起反駁,和已有的主流觀點(diǎn)也會(huì)有出入和沖突。作為該領(lǐng)域極為出色的作者,盧克究竟對(duì)哪些主流看法提出了挑戰(zhàn)呢?
1.開放數(shù)據(jù)并不一定是好事 第一條就是重炮!花費(fèi)大量真金白銀才拿到的獨(dú)家數(shù)據(jù)是公司將新產(chǎn)品推向市場(chǎng)參與競(jìng)爭(zhēng)時(shí)的重要籌碼。沒(méi)了這個(gè)籌碼,那么公司的投資回報(bào)率就沒(méi)那么有保障了。為什么要花費(fèi)巨資研發(fā)一款日后誰(shuí)都可以坐享其成參與生產(chǎn)的新產(chǎn)品呢?從這個(gè)角度說(shuō),開放數(shù)據(jù)反而阻礙了行業(yè)的進(jìn)步。雖然數(shù)據(jù)共享有助于產(chǎn)出更多的研究論文,但卻不會(huì)有新產(chǎn)品的誕生。開放數(shù)據(jù)對(duì)于差異化也是巨大的災(zāi)難,大家會(huì)拼命向著公開數(shù)據(jù)中最好的那部分做過(guò)擬合(過(guò)擬合,或稱過(guò)度擬合,是指在擬合一個(gè)統(tǒng)計(jì)模型時(shí)使用過(guò)多參數(shù)。即使是一個(gè)荒謬的模型,只要足夠復(fù)雜,參數(shù)足夠多,都可以做到完美匹配數(shù)據(jù),譯者注。) 2.對(duì)于訓(xùn)練模型來(lái)說(shuō),正常和反常數(shù)據(jù)交織在一起是巨大的挑戰(zhàn) 反常數(shù)據(jù),或者俗話說(shuō)的黑天鵝是無(wú)處不在的,以至于你收集的數(shù)據(jù)永遠(yuǎn)不可能覆蓋所有情況,而且你發(fā)現(xiàn)異常數(shù)據(jù)的嗅覺(jué)通常不會(huì)那么靈敏(更何況你根本拿不到異常數(shù)據(jù))。我猜想,要是一款“正常胸片檢測(cè)器”上市,那么就會(huì)有大量的骨骼腫瘤被漏診。 3."人工智能"是一個(gè)偉大的概念 我們都明白“人工智能”這個(gè)詞意味著什么,它為這個(gè)行業(yè)帶來(lái)了諸多利好和資金,而且坦率來(lái)說(shuō)我們所做的事情就如同魔法一樣(就像那句著名的“科技發(fā)達(dá)到一定程度就是魔法”所說(shuō)的),你要是認(rèn)為“AI沒(méi)什么神奇的”,那你就需要一點(diǎn)孩子般求知欲了:我們可是用數(shù)學(xué)把聲音轉(zhuǎn)化成了意義、把圖像轉(zhuǎn)化成了決策的。所以就讓我放手去干吧。 4.深度學(xué)習(xí)對(duì)于電子健康檔案(Electronic Health Record, EHR)是相當(dāng)無(wú)能為力的 這么說(shuō)不僅僅是因?yàn)樯疃葘W(xué)習(xí)對(duì)于EHR非結(jié)構(gòu)化的數(shù)據(jù)不太靈光(有一件事我很困擾:就因?yàn)樗鼈兣懦闪藥仔袔琢?,就常常被說(shuō)成是“結(jié)構(gòu)性數(shù)據(jù)”。其實(shí)它們并沒(méi)有什么可以利用的內(nèi)部結(jié)構(gòu)?。?,而且我看不到任何技術(shù)突破的跡象。深度學(xué)習(xí)在圖像、文本、聲音等等領(lǐng)域大展拳腳,是因?yàn)樗鎸?duì)的是特征子集非常有限(也就是說(shuō)存在空間關(guān)系)。EHR 數(shù)據(jù)就不一樣了,毫無(wú)內(nèi)在結(jié)構(gòu)可言(唯一的例外是EHRs的時(shí)間序列數(shù)據(jù),它們確實(shí)有時(shí)間結(jié)構(gòu),或許可以為深度學(xué)習(xí)所利用)。所以深度學(xué)習(xí)并不比更簡(jiǎn)單的機(jī)器學(xué)習(xí)模型效果更好。 5.用戶的數(shù)據(jù)可解釋性(數(shù)據(jù)解釋性是一個(gè)專業(yè)名詞,這里可以理解為對(duì)數(shù)據(jù)解釋工具的需求)被高估 (圖片來(lái)源:123RF) 如果你的模型有效,大多數(shù)醫(yī)生會(huì)樂(lè)于將所有的相關(guān)決策交給人工智能來(lái)做,而不需要配套的數(shù)據(jù)解釋工具。可解釋性方法充其量給臨床醫(yī)生提供了虛幻的安全感(在我看來(lái),可解釋性方法其實(shí)非常重要,但不是對(duì)技術(shù)員來(lái)說(shuō)。這些方法大可以成為工具,讓我們這些做品質(zhì)保證的書呆子用來(lái)監(jiān)控和檢修AI,以保證系統(tǒng)持續(xù)安全)。盡管如此,對(duì)于視安全性高于一切的首席信息官(CIO,通常是公司內(nèi)信息系統(tǒng)的最高負(fù)責(zé)人)來(lái)說(shuō),人為的數(shù)據(jù)解釋工作才更有吸引力。因此,目前普遍以熱點(diǎn)圖的方式做注釋的做法多少有些諷刺意味。 6.如果一支團(tuán)隊(duì)只會(huì)為任務(wù)建立花哨的新模型,它在醫(yī)學(xué)上就取得不了任何進(jìn)展 如果有人自制了一個(gè)模型,而不是利用現(xiàn)有的密集網(wǎng)絡(luò)/殘差網(wǎng)絡(luò)/卷積網(wǎng)絡(luò)/初始網(wǎng)絡(luò)等等,那么他從事的就是機(jī)器學(xué)習(xí)研究,而非醫(yī)學(xué)研究。建立并調(diào)試你自己的模型,這個(gè)過(guò)程意味著你十有八九會(huì)對(duì)特定的數(shù)據(jù)做過(guò)度擬合,這對(duì)良好的醫(yī)療系統(tǒng)是一道詛咒。對(duì)于使用新穎架構(gòu)在醫(yī)學(xué)數(shù)據(jù)中得出的結(jié)果,我是相當(dāng)懷疑的。 7.發(fā)布公共代碼對(duì)醫(yī)學(xué)人工智能研究沒(méi)有多大意義 它并不能提升高性能系統(tǒng)的重現(xiàn)性,因?yàn)槿魶](méi)有一個(gè)同樣優(yōu)秀(但內(nèi)容不同)的數(shù)據(jù)集,我們就無(wú)法驗(yàn)證結(jié)果。就算有了共享的數(shù)據(jù),在同樣的數(shù)據(jù)上運(yùn)行同樣的代碼,也只能證明結(jié)果不是編造出來(lái)。 8.視覺(jué)識(shí)別已經(jīng)相當(dāng)完善 計(jì)算機(jī)視覺(jué)模型在性能上已經(jīng)不會(huì)再有大的改進(jìn)。我們會(huì)看到數(shù)據(jù)利用率和半監(jiān)督學(xué)習(xí)方面的緩慢進(jìn)步,但是只要投入足夠的努力和數(shù)據(jù),AI就能在幾乎任何一項(xiàng)數(shù)據(jù)任務(wù)上達(dá)到人類水平,甚至超越人類。我們已經(jīng)達(dá)到了最小誤差。 9.無(wú)監(jiān)督學(xué)習(xí)沒(méi)有臨床意義 (圖片來(lái)源:pixabay) 目前來(lái)看,所有可能為臨床增添價(jià)值的AI都是受到監(jiān)督的,因?yàn)橐袁F(xiàn)在的輸入而言,人類的表現(xiàn)已經(jīng)接近最佳。無(wú)監(jiān)督學(xué)習(xí)的表現(xiàn)越來(lái)越好,但它遲早會(huì)出差錯(cuò),而且那肯定比人類的差錯(cuò)嚴(yán)重。當(dāng)然,在有些情況下,無(wú)監(jiān)督學(xué)習(xí)能對(duì)監(jiān)督學(xué)習(xí)起到補(bǔ)充作用,但是要用巨量未標(biāo)記的數(shù)據(jù)來(lái)解決醫(yī)學(xué)問(wèn)題,現(xiàn)在還為時(shí)過(guò)早?! ?/span> 10.任何AUC(Area under the Curve of ROC,一種模型評(píng)價(jià)指標(biāo))指標(biāo)低于0.8的系統(tǒng)都不要信任 因?yàn)檫@個(gè)數(shù)值大致代表了醫(yī)療AI系統(tǒng)對(duì)非病理性影像特征過(guò)度擬合時(shí)的表現(xiàn),這些特征包括X光掃描儀采用了什么模型,或者是哪個(gè)技術(shù)員拍攝的影像(這些在影像中多少都可以辨認(rèn)出來(lái))。這些系統(tǒng)多半會(huì)成為失敗的臨床AI系統(tǒng),因?yàn)樗鼈儧](méi)有概括能力。顯然,把這條線劃在0.8是把問(wèn)題過(guò)度簡(jiǎn)化了,但是對(duì)于許多普通的醫(yī)療任務(wù),這還是一條好用的經(jīng)驗(yàn)法則。