從投資機(jī)構(gòu)的反響可知,2018下半年融資難度陡增已經(jīng)成為不爭(zhēng)的事實(shí),但新興科技領(lǐng)域從來不乏布局者,匯醫(yī)慧影、推想科技均在寒冬之中發(fā)布了新一輪融資,體素科技更收獲數(shù)額最大的5000萬(wàn)美金,總?cè)谫Y金額即將破億美金。
收獲總是與付出息息相關(guān)。2018年,體素先后開發(fā)了漸進(jìn)密集V型深度網(wǎng)絡(luò)與代理監(jiān)督學(xué)習(xí)算法,解決了三維影像中器官的定位、導(dǎo)航、分割問題與弱數(shù)據(jù)的利用問題,又發(fā)布了“體素膚知匯”,用多任務(wù)模型對(duì)200多種皮膚病進(jìn)行分析。
近日,在動(dòng)脈網(wǎng)舉辦的“2018未來醫(yī)療100強(qiáng)”論壇上,記者有幸采訪到了體素科技CEO丁曉偉,嘗試了解巨額融資背后的邏輯。
體素科技創(chuàng)始人兼CEO丁曉偉
經(jīng)濟(jì)下行壓力下,投資人看重什么 能否在有限的時(shí)間內(nèi)構(gòu)建核心競(jìng)爭(zhēng)力,這是投資人最為關(guān)心的話題。紅杉資本董事總經(jīng)理翟佳表示:在行業(yè)概念期過去之后和資本寒冬之下,技術(shù)和產(chǎn)品壁壘已成為投資人的主要關(guān)注點(diǎn)。 衡量技術(shù)壁壘的客觀因素包含成績(jī)與團(tuán)隊(duì)兩個(gè)方面?,F(xiàn)有的成績(jī)反應(yīng)了企業(yè)當(dāng)前的技術(shù)研發(fā)水平,而團(tuán)隊(duì)能力則隱含了企業(yè)的發(fā)展?jié)摿Α?/p> 在商業(yè)化未知的情況下,選擇技術(shù)成熟的企業(yè)不失為一個(gè)避免風(fēng)險(xiǎn)的好方法,而優(yōu)質(zhì)的創(chuàng)業(yè)團(tuán)隊(duì)則是企業(yè)長(zhǎng)治久安的核心。對(duì)于這兩點(diǎn),體素科技無(wú)疑都交出了很好的答卷。 一方面,Demetri Terzopoulos院士與克利夫蘭醫(yī)學(xué)中心Cleveland Clinic Lerner醫(yī)學(xué)院創(chuàng)辦者Eric Topol教授的加入為體素灌注了人才力量;另一方面,多產(chǎn)品線的同時(shí)發(fā)展讓體素的冠脈、眼底、皮膚等產(chǎn)品的敏感度與特異性不斷進(jìn)步,以眼底為例,視網(wǎng)膜全病種解決方案對(duì)于有無(wú)糖網(wǎng)的敏感度已經(jīng)達(dá)到了97%,特異性也超過了90%。 如今,體素正嘗試從多個(gè)渠道對(duì)產(chǎn)品進(jìn)行變現(xiàn),這些因素均為體素科技的估值加分。 設(shè)計(jì)細(xì)節(jié),我們應(yīng)該遵循怎樣的產(chǎn)品理念? 醫(yī)療人工智能產(chǎn)品的作用方式較為復(fù)雜,一般而言,企業(yè)的產(chǎn)品是為醫(yī)生而設(shè)計(jì),而實(shí)際付費(fèi)方是醫(yī)院,但服務(wù)的方向“以患者為中心”。支付、服務(wù)與被服務(wù)的錯(cuò)位導(dǎo)致了利益沖突。 從現(xiàn)在的形式上看,大多數(shù)企業(yè)的設(shè)計(jì)完全圍繞醫(yī)生,這是源于在當(dāng)前的落地階段,醫(yī)生在決定是否接納AI產(chǎn)品時(shí)擁有較大的話語(yǔ)權(quán)。 如今,隨著大部分頭部企業(yè)跨越B輪融資,僅僅針對(duì)醫(yī)生的偏好打磨產(chǎn)品的思路可能需要做出改變,企業(yè)普遍面臨變現(xiàn)壓力。 在這一情況下,丁曉偉認(rèn)為:“不同對(duì)象的訴求不同,醫(yī)院關(guān)心全院的資源配置合理性,而在科室之中,醫(yī)生更關(guān)心產(chǎn)品的性能。在醫(yī)生之中,高年資和低年資的醫(yī)生對(duì)AI產(chǎn)品的需求存在很大的差異,高年資醫(yī)生希望AI能夠解決效率問題,低年資醫(yī)生則希望你設(shè)計(jì)的產(chǎn)品能夠做出提醒增加診斷信心,防止漏診。地域間的差異也將反應(yīng)在產(chǎn)品差異上,如在美國(guó),新技術(shù)的使用最好有助于醫(yī)??刭M(fèi)?!?/p> 因此,體素科技在設(shè)計(jì)與改良產(chǎn)品時(shí),往往遵循從自下而上加自上而下的方式,采集多方意見,將其進(jìn)行綜合,從中找到一個(gè)受眾最大的公共區(qū)域,并計(jì)算其實(shí)際可能帶來的效率提升。面對(duì)地域和國(guó)家差異,則分別需要設(shè)計(jì)獨(dú)立產(chǎn)品線。 從單病種到全病種是量變到質(zhì)變的過程 迄今為止,大多數(shù)的AI影像產(chǎn)品聚焦于單一重任務(wù),如肺結(jié)節(jié)檢測(cè)和骨折等。作為一個(gè)小工具,這樣的人工智能產(chǎn)品足以勝任,但對(duì)于大多數(shù)場(chǎng)景,單一病種分析的價(jià)值非常有限。 所以,體素科技將研究的核心放在了全病種產(chǎn)品的探索上,丁曉偉表示:“所謂全病種,不是指我們可以分析人身上的所有器官的所有疾病。而是在一個(gè)給定的影像協(xié)議上,如薄層平掃胸部CT,全病種相對(duì)于單一重任務(wù),不僅可以針對(duì)一種病灶類型做出分析,而是對(duì)當(dāng)前掃描中所有可見異常給出分析。臨床醫(yī)生往往根據(jù)主訴和其他檢查結(jié)果為患者開具影像檢查單,目的是發(fā)現(xiàn)未知的異常是什么疾??;健康人參加體檢,目的也是發(fā)現(xiàn)身體里未知也沒有感覺的潛在風(fēng)險(xiǎn)。這兩種人群都不是在做出疾病假設(shè)的前提下做檢查的。以眼底為例,眼科或內(nèi)分泌醫(yī)生能從一張眼底照片中看出很多信息,如老年黃斑變性、可疑的青光眼、糖網(wǎng)病。但患者在出現(xiàn)視力下降等癥狀時(shí),醫(yī)生通過排查懷疑是眼底病變,則需要通過眼底檢查確定眼底發(fā)生了何種病變,選擇使用AI輔助產(chǎn)品自然就需要一個(gè)可以檢測(cè)所有眼底照相可見異常的產(chǎn)品,而不是選擇一個(gè)只能提醒糖網(wǎng)病的產(chǎn)品;另一方面,患者可能患有多種疾病,單一疾病的檢出可能會(huì)扭曲醫(yī)生的評(píng)價(jià)?!?/p> 體素科技視網(wǎng)膜全病種解決方案 未來,體素科技將讓AI產(chǎn)品能夠順應(yīng)醫(yī)生需求對(duì)患者的影像作出全面的分析,讓影像發(fā)揮其真正的價(jià)值。